SPECIATION

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Speciation

- Divergence
 - If gene flow ends, isolated populations diverge
- Divergence can lead to speciation
 - Ancestral groups to 2+ species

An ancestral population

Population splits onto different islands and characteristics diverge

Large ground finch

Biological species concept

- Species are...
 - Populations that are reproductively isolated from each other
- □ No gene flow b/n populations
 - Do not interbreed
 - Fail to produce viable, fertile offspring

Biological Species Concept

- Advantages
 - Applicable to many ecological studies
 - Can define different spp. that may be morphologically similar

Biological species concept

- Disadvantages
 - Can't be evaluated in fossil record
 - Ignores asexual species
 - Only applied to populations that geographically overlap

Morphospecies concept

- Species are...
 - Different in morphological lineages
- Different morphological features arise
 - Populations are independent
 - Isolated from gene flow

Morphospecies concept

- Advantages
 - Can be used with the fossil record
 - Can easily identify spp. in the field
 - Doesn't require geographic overlap

Morphospecies concept

Disadvantages

- Can't identify species not morphologically different
- Morphological feature are subjective
- Variation exist in populations

- Based on reconstructing evolutionary history of populations
- Species are defined as the smallest monophyletic group
 - Monophyletic group: an ancestral population and all descendants
 - **► Synapomorphy**: trait unique to a monophyletic group

- Advantages
 - Can lead to very precise definitions of taxa
 - Even if they look similar
 - Can validate (or invalidate) previously established taxa
 - Split (into 2+ spp.)
 - Lumped (into 1 sp.)
 - Creates phylogenies based on <u>data</u> (not assumptions)

Disadvantages

- Leads to recognition of many more species
- Difficult to identify species in the field
- Incomplete phylogenies for many groups

Subspecies

- Populations in discrete geographic areas
- Very little gene flow

Isolation and Divergence

- Genetic isolation from physical isolation
 - Dispersal

- Vicariance
- Population moves to new area
- Physical barrier splits

Vicariance

Physical isolation of populations

Kiabab squirrel

Allopatric speciation

- Speciation from physical separation
- Mechanisms
 - Dispersal
 - Vicariance

Sympatric speciation

- Speciation without geographic isolation
- Originally thought to be impossible
 - Gene flow would overwhelm genetic drift
- Can happen
 - Preferences in a habitat

Sympatric speciation

Polyploidy

- Mutations that lead to individuals having more than one set of chromosomes
 - \square 4n instead of 2n
 - tetraploid
- Common in plants
- Can cause rapid speciation

Polyploidy

- Diploids can't mate with tetraploids
 - Produce triploids
 - Reproductively isolated

Autopolyploidy

- Polyploidy of same species
- □ 4n maidenhair ferns
 - Produced diploid gametes
- 4n populations genetically isolated from 2n
- Divergence begins
- Sympatric speciation possible

Allopolyploidy

- Chromosomes derived from different spp.
- \square New tetraploid (4n) species (hybrid)
 - From diploid hybridization
 - When diploid gamete fuse

Why polyploidy in plants?

- Self-fertilize
 - Diploid gametes can fuse
- Hybridization is common
 - Creating opportunity for allopolyploidy

When isolated populations contact

- Depends how far populations have diverged genetically
 - Large divergence
 - Mating rare
 - Gene flow minimized
 - Populations continue to diverge
 - "Insignificant" divergence
 - Mating frequency increases
 - Gene flow increases
 - Populations converge

When isolated species contact

- Geographic area where interbreeding of two species occur
- Hybridization
 - Commonly leads to local extinction
 - Sometimes origination of new species

