POPULATION ECOLOGY

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Population ecology: overview

- Population
 - Group of individuals of same species in same area at same time
- Population ecology
 - Study of how and why a population changes over time
 - Utilizes mathematics as predictive tool

Demography

- Demography
 - Study of factors that determine size and structure of populations through time
- Populations grow
 - Birth
 - Immigration

$$P_2 = P_1 + (B + I - D - E)$$

- Populations decline
 - Death
 - Emigration

Survivorship curve

- Proportion of offspring that survive at specific age
 - Logarithm of number of survivors vs. age
- Type
 - Type I curve
 - Survivorship high throughout life
 - Humans
 - Type II curve
 - Survivorship constant over life
 - Songbirds
 - Type III curve
 - High death rates early
 - High survivorship after maturity
 - Trees

Fecundity

- The number of offspring produced by each female a population
- Survivorship curve and fecundity useful in calculating growth rate of population

Fitness trade-offs

- Resources are limited
 - Limited E
 - Female can:
 - Maximize fecundity
 - Maximize survivorship
 - Balance the two
 - Resource allocation

Population growth

- \Box Growth rate (r) is function of
 - \square Change individuals of population (ΔN) per unit time (Δt)

$$r = \Delta N / \Delta t = (b - d)$$

- r varies through time
 - Positive: growing
 - Negative: declining
 - Neutral: no growth

Exponential growth

Exponential growth

- \square Occurs when r doesn't change over time
 - Density independent
 - Doesn't depend on number of individuals in population
- Observed in:
 - 1. Founding of new habitat
 - Population devastated (e.g. hurricance) & recovers from few individuals
- Can't continue forever
 - Population density gets too high (r declines)
 - Density dependent

Logistic growth

- Carrying capacity (K)
 - Maximum individuals that are sustainable over time
 - \square If population < K
 - Population grows
 - \square If population > K
 - Population decreases
- Logistic growth equation
 - Density dependent

Logistic growth

- □ r phase
 - Growth is exponential
 - \square r is constant
- Density-dependency
 - r declines when N increases
- □ K phase
 - r reaches zero at K

Density dependence

- □ Key factor of K
- □ Factors of density dependence
 - Over-exploitation of resources (food, space, light)
 - Predation

Carrying capacity varies

- □ K is not fixed in type
 - Varies among spp. & populations
- □ K is not fixed in space
 - Varies among habitats
 - Food availability, space, etc
- K is not fixed time
 - Some years are better

Metapopulations

A metapopulation is made up of small, isolated populations.

Although some subpopulations go extinct over time...

...migration can restore or establish subpopulations.

- Population of populations
- Patches go extinct, redevelop,
 and are reestablished over time

Time

Age structure

- Proportion of individuals at each age group
- Affects population's growth over time
- Varies over time
 - Common primrose
 - New tree gaps have rapidly growing juveniles
 - As tree grows, population declines leaving mostly adults

Human age structure

Human population growth rate

Human population growth rate

