GREEN ALGAE AND LAND PLANTS

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Primary producers

- Start of the food chain
- Dominant source of C and E in the world

Reduces CO2 to make sugars

□ Provide most of our:

- Food
- Fuel
- Fibers
- Building materials
- medicine

Green Algae

- Key photosynthetic organisms in freshwater
- Traditionally considered protists
 - Closest living relatives to land plants
 - Aquatic to terrestrial life started with green algae

Green algae

- Similarities with plants
 - Chloroplast
 - Cell wall
- Unicellular, colonial, multicellular
- Marine or freshwater

Green algae

Hypothesized closest related to plants

Coleochaetophyceae (coleochaetes)

(stoneworts)

Early land plant adaptions

- Advantages
 - More light and CO₂
- Adaptation
 - Prevention of water loss
 - Tissues of green algae dry out easily
 - Transportation of water

Origin of land plants

- Earliest land plants
 - Watertight cuticle developed
 - Stomata for "breathing"
 - Spores encased in protective coating

First evidence of land plants: cuticle, spores, sporangia Most major morphological innovations: stomata, vascular tissue, roots, leaves

Extensive coal-forming swamps

Both wet and dry environments blanketed with green plants for the first time

Diversification of flowering plants

Origin of land plants

Silurian-Devonian explosion Carboniferous: Lycophytes and orsetails abundan

Gymnosperms abundant

Angiosperms abundant

475 mya

416

359

299

145

Angiosperins abundant

Present

Land plant adaptions: cuticle

- Waxy, watertight layer
- Reduces water loss
- Inhibits gas exchange: no CO₂

Land plant adaptions: stomata

- Pores in leaf
- Promoting gas exchange
- Guard cells
 - Specialized cells

Reproducing in dry environments

- Innovations
 - Spores
 - resist drying b/c encased in tough coat
 - unicellular

Non-vascular plants

- Bryophytes (aka non-vascular plants)
 - don't have a specialized group of cells for conducting water
 - Low growing
 - Very moist

Moss

Liverworts

Land plant adaptations: vascular tissue

- Advantages of upright growth
 - Early plants grew low to ground
 - Taller plants would dry out
 - Intense competition for light
- Challenges of upright growth
 - Transporting water against gravity
 - Lack of rigidity

Silurian-Devonian explosion

Silurian-Devonian Explosion

 All major plant adaptations for terrestrial habitat develop

Water-conducting tissue

Roots

Stomata

leaves

First evidence of land plants: cuticle, spores, sporangia Most major morphological innovations: stomata, vascular tissue, roots, leaves

Extensive coal-forming swamps

Both wet and dry environments blanketed with green plants for the first time

Diversification of flowering plants

Origin of land plants

Silurian-Devonian explosion

Carboniferous: Lycophytes and orsetails abundan

Gymnosperms abundant

Angiosperms abundant

Present

475 mya

416

359

299

145

Evolution of vascularity

- Vascularity evolved in a series of steps
- Primary adaptation for upright growth
 - Scaffolding the transporting cell
 - Lignin

(a) Simple waterconducting cells

(b) First vascular tissue

Evolution of vascularity

- Tracheids
 - Long, thin tapering water-conducting cells

(b) First vascular tissue

- 2 cell walls: extra support
- Pits at ends
- All vascular plants

(c) Tracheids

Vascular tissues

- Xylem
 - Carries water up
- Phloem
 - Carries sugars down

Seedless vascular plants

- Have vascular tissue (water and sugars are conducted)
 - Allows plants to grow further off ground
- Spores

Whisk ferns

Ferns

Horsetails

Seed plants

- □ Age of the gymnosperms
- Major developments
 - Seeds
 - Multicellular
 - Functions
 - Nutrition
 - Dispersal

First evidence of land plants: cuticle, spores, sporangia

Most major morphological innovations: stomata, vascular tissue, roots, leaves

Extensive coal-forming swamps

Both wet and dry environments blanketed with green plants for the first time

Diversification of flowering plants

Origin of land plants

Silurian-Devonian explosion Carboniferous: Lycophytes and orsetails abundar

Gymnosperms abundant

Angiosperms abundant

475 mya

416

359

299

145

Present

Seed plant groups

- Gymnosperms
 - "Naked seeds"
 - Seeds not in enclosed within a floral structure
- Angiosperms
 - "vesseled seeds"
 - Flowering plants
 - Seeds inside carpel
 - Protective structure of the flower

Age of Angiosperms

□ Time of rapid diversification

- Grasses
- Orchids
- Daisies
- Oaks
- Roses

First evidence of land plants: cuticle, spores, sporangia

Most major morphological innovations: stomata, vascular tissue, roots, leaves

Extensive coal-forming swamps

Both wet and dry environments blanketed with green plants for the first time

Diversification of flowering plants

Origin of land plants

Silurian-Devonian explosion Carboniferous: Lycophytes and orsetails abunda

Gymnosperms abundant

Angiosperms abundant

475 mya

416

359

299

145

Present

Seed dispersal

- Advantageous for offspring to be far from parent plant
 - Avoid competition for light, water, & nutrients

Seed dispersal

Evolution of vascularity

- Vessel elements
 - Shorter, wider than tracheids
 - Gaps on both ends
 - More efficient

Parts of a flower

Pollination associations

Carrion flowers

Look & smell like rotting meat

Hummingbird flower

- Red
- tubular

Bee flowers

- Purple
- Blue
- Landing pads

- Two main groups of Angiosperms
 - Monocotyledon
 - One cotyledon
 - Scattered vascular tissue
 - Parallel veins
 - Petals multiple of three

- Dicotyledon
 - Two cotyledons
 - Circular vascular tissue
 - Branching veins
 - Petals multiple of 4 or 5

One cotyledon

Two cotyledons

- Two main groups of Angiosperms
 - Monocotyledon
 - One cotyledon
 - Scattered vascular tissue
 - Parallel veins
 - Petals multiple of three

- Dicotyledon
 - Two cotyledons
 - Circular vascular tissue
 - Branching veins
 - Petals multiple of 4 or 5

- Two main groups of Angiosperms
 - Monocotyledon
 - One cotyledon
 - Scattered vascular tissue
 - Parallel veins
 - Petals multiple of three

MONOCOTS

Parallel veins in leaves (bundles of vascular tissue)

- Dicotyledon
 - Two cotyledons
 - Circular vascular tissue
 - Branching veins
 - Petals multiple of 4 or 5

- Two main groups of Angiosperms
 - Monocotyledon
 - One cotyledon
 - Scattered vascular tissue
 - Parallel veins
 - Petals multiple of three

MONOCOTS

Petals in multiples of 3

- Dicotyledon
 - Two cotyledons
 - Circular vascular tissue
 - Branching veins
 - Petals multiple of 4 or 5

Petals in multiples of 4 or 5