FUNG

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Fungi phylogenetics

- More closely related to animals than plants
 - Fungal infections more difficult to treat
 - Shared ancestry
 - Evidence:
 - DNA sequence
 - Synthesize chitin
 - Store glucose as glycogen

Fungi

- Diverse group
- Mostly multicellular
- Feed by absorbing nutrients
 - From living or dead organisms
 - World's most important decomposers
- Terrestrial recyclers

Mycorrhizal association

(a) Mycorrhizal fungi form extensive networks in soil.

- Mutualism
 - Nearly all land plants
 - Enhance absorption

(b) Mycorrhizal fungi increase plant growth.

Fungi & the Carbon Cycle

- 2 components
 - Fixation of C by land plants
 - Release of CO₂ from cellular respiration
- Fungi connect 2 components
 - Break down wood into reusable C

Economic importance

- Antibiotics
 - Penicillin
- □ Food
 - Mushrooms
- Fermentation
 - Cheese, bread, beer, wine
- Destructive to crops

Growth forms

- Yeasts
 - Single-celled
- Mycelia
 - Multicellular
 - Filamentous
- Some adopt both forms

(a) Single-celled fungi are called yeasts.

(b) Multicellular fungi have weblike bodies called mycelia.

Mycelium

- Hyphae
 - □ Filaments of mycelia
 - Very thin

- Dynamic
 - Grow towards food
 - Die back when food runs out

Mycelium

- □ Filaments (= hyphae) linked by septa
- Gaps in septa
 - Pores
 - Material flow

Mycelium

- Highest SA:V ratio of any multicellular organism
- Absorption very efficient
- Prone to drying out
 - **■** Exception:
 - Spores
 - Thick fleshy structures (mushrooms)

Chytrids

- Only motile fungal cells
- □ "Swimming" spores
- Amphibian decline

- Zygomycetes
 - Have zygosporangia
 - Asexual form:
 - Sexual form:
 - when 2 haploid hyphae cells fuse together
 - Bread mold

Rhizopus -black bread mold

Basidiomycetes

- Basidia
 - "little pedestals"
 - Specialized spore-producing cells
 - Meiosis produces spores
 - Form at end of hyphae
- Mushrooms and puffballs

- Ascomycetes
 - Asci
 - Sacs where meiosis occurs
 - Spores form
 - Morel

Chytridiomycota & Zygomycota

- Chytrids
 - Motile spores
 - Motile gametes

- Zygotes
 - Tough coat
 - Terrestrial

Chytridiomycota & Zygomycota

- Chytrids
 - Motile spores
 - Motile gametes
- Zygotes
 - Tough coat
- Paraphyletic
 - No common ancestor

Basidiomycota

- "Club fungi"
- Monophyletic
- □ Have basidia
- Dikaryotic
 - □ 2 nuclei

Ascomycota

- "Sac fungi"
- Monophyletic
- Dikaryotic

