#### EVOLUTIONARY PROCESSES

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

# Hardy-Weinberg Principle

- GH Hardy & Wilheim Weinberg (1908)
  - Developed mathematical model
  - Analyzing consequences of mating of individuals
  - What happens if all individuals of a population breed



# Gene pool concept

- Hardy and Weinberg
  - All gametes of generation are a single group
    - Gene pool
  - Gametes of gene pool combine randomly
  - Calculations predict frequency of genotypes in a population

# Hardy-Weinberg Principle

#### Simple population

- $\blacksquare$  Two alleles:  $A_1 \& A_2$
- Frequency of  $A_1 = p$
- $\blacksquare$  Frequency of  $A_2 = q$
- p + q = 1
- Possible genotypes
  - $\Box A_1 A_1 : p^2$
  - $\Box A_2 A_2 : q^2$
  - $\square A_1 A_2$ : 2pq

|   | p     | q                 |
|---|-------|-------------------|
| p | $p^2$ | pq                |
| q | pq    | $q^{\mathcal{Z}}$ |

# Hardy-Weinberg Equation

$$p^2 + 2pq + q^2 = 1$$

- Individuals can only have1 of 3 genotypes
- Sum of genotypes must equal 100%

|   | p       | q       |
|---|---------|---------|
| p | $p^{2}$ | pq      |
| q | pq      | $q^{z}$ |

# Hardy-Weinberg Principle

 Prediction 1: Genotype frequencies can be calculated from parental allele frequencies

### Hardy-Weinberg Principle

- Prediction 1: Genotype frequencies can be calculated from parental allele frequencies
- Prediction 2: Offspring allele frequencies are the same as parental allele frequencies
  - Allele frequencies don't tend to move toward 0.5
  - Dominant alleles don't tend in increase in frequency

# H-W: allele frequencies principle

#### Allele frequencies in parental generation:



Genotype frequencies in offspring generation:

$$A_1 A_1 p^2 = 0.49$$

$$A_1 A_2 2pq = 0.42$$

$$A_2A_2$$
  $q^2 = 0.09$ 

Allele frequencies in offspring generation:

$$A_1$$
  $p = 0.49 + \frac{1}{2}(0.42) = 0.70$ 

$$A_2$$
  $q = \frac{1}{2}$  (0.42) + 0.09 = 0.30

$$\begin{cases} A_{1:} p_{\text{offspring}} = p_{\text{parent}}^2 + \frac{1}{2} (2p_{\text{parent}} q_{\text{parent}}) \\ A_{2:} q_{\text{offspring}} = q_{\text{parent}}^2 + \frac{1}{2} (2p_{\text{parent}} q_{\text{parent}}) \end{cases}$$

© 2011 Pearson Education, Inc

# Hardy-Weinberg Principle

- If allele frequencies change through generations (P1 and/or P2 not met), then the population is either:
  - Evolving
  - Nonrandom mating
  - or both

### H-W: practice

You should be able to answer these questions for the exam.

If a parent population has a frequency of an allele  $(A_1)$  of 0.2, answer the following questions according to the Hardy-Weinberg principle.

- What is the allelic frequency of allele A<sub>2</sub> in the parental population.
- What is the expected genotypic frequency of  $A_1A_1$  of the next generation?
- What is the expected genotypic frequency of  $A_1A_2$  of the next generation?
- What is the expected genotypic frequency of  $A_2A_2$  of the next generation?
- What is the expected phenotypic frequency of the dominant phenotype of the next generation?
- What is the expected phenotypic frequency of the recessive phenotype of the next generation?

# Assumptions of Hardy-Weinburg

- Used as a null model
- Assumptions
  - Mating is random
  - None of 4 mechanisms of evolution acting
    - No natural selection
    - No genetic drift
    - No gene flow
    - No mutations

### H-W as a null hypothesis

- H-W tells what to expect if no evolution is occurring and mating is random
- □ If frequencies do change, something else is at work

#### **Directional Selection**



- Frequency of one allele increases
- Disadvantageous alleles are lost
- □ e.g. Giraffe's neck

#### **Directional Selection**

- Island dwarfism
  - Homo florensis
  - Elephants
  - Chameleons







### Stabilizing selection

- Intermediate traits reproduce more
  - Higher fitness
- No change in average value of trait
- e.g. human birth weightsvs. mortality



#### Disruptive selection



- Extreme phenotypes are more fit than intermediate ones
- Can cause speciation
  - Formation of new spp.
  - Individuals of one extreme mate with like individuals
- Black vs. white rabbits

#### Genetic drift





- Change in allele frequencies
  - due to chance
- Allele frequencies drift up and down over time
  - Random loss of genotypes
- More pronounced in small populations

#### Founder effect



- Homozygous for allele A<sub>2</sub>
- Heterozygous



New population is likely to have different allele frequencies than the source population, by chance

#### Population Bottlenecks



#### Population Bottlenecks



#### Example

- Pingelap Atoll
  - Only 20 survived typhoon (1775)
  - Most survivors had allele for colorblindness
  - Most modern islanders are completely color blind



#### Gene flow

- = movement of alleles from one population to another
- Greater gene flow = greater homogenization
  - Reduces genetic differences b/n populations



#### Mutation

- Most evolutionary mechanisms reduces diversity
- Mutation increases diversity
  - Creating new alleles
- Mutations are random with respect to fitness
  - Most lower fitness
  - Rarely produces beneficial allele
    - Increases in frequency over time
- Primary evolutionary force for unicellular organisms

#### Sexual selection



- Occurs when individuals differ in ability to attract mates
- Special form of natural selection
- Hardy-Weinberg ignored this

#### Sexual selection



#### □ Why?

- Females invest more
  - Fitness is resourcedependent
- Males
  - Fitness limited to ability to mate
- Theory
  - Females are choosy
  - Males compete
  - Sexual selection act strongly on males

### Male-male competition





Lifetime reproductive success: Number of offspring weaned

# Sexual dimorphism



