EVOLUTION BY NATURAL SELECTION

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Ancient ideas of evolution

- Plato
 - Every organism was perfect type from creator
 - Variations were unimportant
 - Typological thought
 - Species are unchanging
- □ Aristotle
 - Great chain of being
 - Species are unchanging
 - Some species are higher

Aristotle and others proposed that species were organized into a **Humans** sequence based on increased size and complexity, with Live-bearing vertebrates humans at the top Egg-bearing vertebrates Invertebrates Higher plants Lower plants Inanimate matter

Jean-Baptiste de Lamarck

- □ 1809: First to propose formal theory of evolution
- Organisms originate
 - At base of great chain of being
 - Evolve by moving up over time
- Process
 - Inheritance of acquired characteristics
 - Individuals change in response to environment
 - Pass those changes to offspring

Lamarckism

- Lamark thought
 - Traits acquired in life passed on
- Mechanism of evolution
- Randomness exists in all populations
- Those most 'fit' to survive are more likely to reproduce

Charles Darwin

- □ Some fossils extinct?
- Why same fossils on different continents?

Darwin's Finches

- ☐ HMS Beagle
- Galapagos Islands
- Different but similar
 - Common ancestor
- Beak size related to food source
- Inferred natural selection caused speciation

Charles Darwin

- Population thinking
 - Not individual (typological)
- New species via natural selection
 - Variation in populations
 - Organisms differ in 'fitness'
 - Fitness = ability to survive (food, defense) and reproduce
 - Giraffe evolution via nat. sel.

Alfred Wallace

- Independently came up with the theory of species emergence
- Speciation by environmental pressures
- Greatly encouragedDarwin publish his findings

Darwin-Wallace theory

- Why was it revolutionary?
 - Species are not static
 - Species' change through time is not linear
 - Utilizes population rather than typological thinking
 - It was scientific, not philosophical
 - Made predictions
 - Tested through experimentation

Darwin's descent with modification

- Change produced modified species from ancestral species
- Claims about species
 - Species change through time
 - Species related through common ancestry

Darwin's four postulates of nat. sel.

- 1. Individuals' traits in populations vary
- 2. Traits are heritable
- 3. More offspring produced than can survive

4. Those "most fit" more likely to

reproduce

- Geologic data show Earth is 4.6 billion years
- Earliest signs of life is 3.5 billion years
- Many fossils represent extinct species
 - Darwin: evidence that species are dynamic
- Recent evidence: 99.99%species ever existed are extinct

- Transitional forms
 - Intermediate b/n early and late forms of phenotype
 - If traits of recent sp. came from earlier sp. Intermediate forms expected

Whale evolution

- Whales came from terrestrial ancestors
 - Fossil morphologies found
 - Aquatic
 - Terrestrial
 - Intermediate
 - Geologic dating suggests gradual transition

- Vestigial traits
 - Reduced structure in organism that has no function
 - Structurally related to functioning structure of related species

- Species are dynamic
 - Bacteria evolved to resist drugs
 - Insects evolved to resist pesticides
 - Weeds evolved to resist herbicides

A bunch of bacteria, including a resistant variety...

...get bathed in antibiotics. Most of the normal bacteria die. The resistant bacteria multiply and become more common.

Eventually, the entire infection evolves into a resistant strain.

- Homologies
 - Similarity in spp. from common ancestor
 - Structural homology
 - Vertebrates have common structural plan in limbs
 - Developmental homology
 - Tails and gills found on all vertebrate embryos
 - Genetic homology
 - DNA similarity

Pepper Moth Evolution

- England
- Before Industrial Revolution
 - Light-colored predominant
- During Industrial Revolution
 - Dark-colored predominant

Pepper Moth Evolution

Evolution is not...

- Goal-oriented
 - Favors better adapted individuals
- Typological
 - Happens at population level, not individual
- Progressive
 - Doesn't make "better"
 - Can favor simpler or more complex organisms
 - Traits are routinely lost