COMMUNITY ECOLOGY

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Community ecology: overview

- Community
 - All the populations of all the species in a given area
- □ Community ecology
 - The study between species in a given area

Species interactions

- Competition
 - Occurs when organisms use same resource
 - Lower fitness for both (-/-)
- Consumption
 - one organism eats another
 - \square Increasing consumer's fitness/decreasing victim's (+/-)
- Mutualism
 - \blacksquare Two species benefit from interaction (+/+)
- Commensalism
 - \square One species benefits, the other is unaffected (+/0)

Competition

- □ -/-
 - Competitors use up resources
 - Lowering both of their fitness
- Intraspecific competition
 - \square b/n members of same sp.
 - Intensifies as population density increases
- Interspecific competition
 - Members of different spp.

Niche model

- Interspecific competition is minimized
 - via limiting competition for resources
 - e.g. Darwin's Finches

Fundamental vs. realized niche

- Fundamental niche
 - Resources a sp. can tolerate in absence of competition
- Realized niche
 - Resources a sp. can tolerate in presence of competition

Competitive exclusion principle

- GF Gause's hypothesis
 - It is not possible for spp. within same niche to coexist
 - Experiment with paramecium
 - Grown separately: each sp. grew logistically
 - Grown together: one grew logistically, one went extinct

Asymmetric vs. symmetric competition

- Asymmetric competition
 - One species suffers much greater fitness decline
 - Competitive exclusion
- Symmetric competition
 - Each species suffers equal decrease in fitness

Consumption

- □ Types
 - Herbivory: plants
 - Parasitism: small amounts of tissue
 - □ Predation: animals

Coevolutionary arms race

- Consumers evolve traits
 - Increase efficiency of predation
- □ Prey evolve traits
 - Unpalatable
 - Elusive
 - Defense

Defenses

- Avoidance
- Poison
- Schooling behavior
- □ Fighting back

A leaf insect disappears among the leaves.

A school of fish confuses a shark.

Porcupines use their spines to fight back.

Mimicry

Resemblance to a dangerous prey, but aren't

Mimicry

□ Pseudocopulation mimicry

What controls herbivores?

- Top-down control
 - Predation (or disease) limit herbivores
- Bottom-up control
 - Plants nutrition determines herbivore abundance

Mutualisms

(a) Mutualism between ants and acacia trees

(b) Mutualism between cleaner shrimp and fish

- <u></u> +/+
- Examples
 - Flowers and pollinators
 - Ants and acacia trees
 - Mycorrhizal fungi & plants
 - Cleaner shrimp and fish

Disturbance

- Disturbance
 - Event that removes biomass from a community
 - Affects resource availability
 - Plants (resources increase)
 - Animals (resources decreases)
- □ Factors affecting disturbance regime
 - Type of disturbance
 - Frequency of disturbance
 - Severity of disturbance

Disturbance regime

□ A characteristic type of disturbance common to an

area

- Types
 - Fire
 - Avalanche
 - Hurricane
 - Drought
 - Flooding

Succession

- Recovery of communities following severe disturbance
- □ Primary succession
 - When disturbance removes soil and its organisms
 - e.g. avalanche, volcanism
- Secondary succession
 - When disturbance removes some or all organisms but leaves soil in tact
 - e.g. wildfire, windstorm

Successional communities

- Early successional communities
 - Dominated by r-selected species
 - Short lived and small size
 - Disperse seed long distance
 - aka pioneer species
 - Adaptations
 - Most E to reproduction
 - Little E to competitive ability
 - Tolerate severe abiotic conditions

Successional communities

- Late successional communities
 - Dominated by K-selected species
 - Long lived and large size
 - aka climax species
 - Adaptations
 - Good competitors for resources
 - High E storage in seeds

Climax community

- Frederick Clements
 - Hypothesized biological communities progress
 - Through predictable stages
 - □ Final stage: climax community

Climax communities

Pioneering species

Early successional Weedy species are replaced by community longer-lived herbaceous species

Shrubs and short-lived Mid-successional trees begin to invade community Long-lived tree **Climax community** species mature

Theory of Island Biogeography

- Robert MacArthur & E.O. Wilson
 - Predicted species richness(# of spp.) is higher on:
 - Larger islands than smaller ones
 - Nearshore islands than remote islands
 - Predicted immigration more likely with fewer spp.
 - Predicted extinction more likely with more spp.

